

International Journal of Solids and Structures 36 (1999) 5665-5666

www.elsevier.com/locate/ijsolstr

Authors' Closure

Reply to comments on "Dual analysis for path integrals and bounds for crack parameter"

Q.Z. Xiao^a, C.C. Wu^{a,*}, G. Yagawa^b

^a Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China ^b Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,

Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-kt Tokyo 113, Japan

In the comments on the paper by Wu et al. (1998), Maigre made the argument that $I^* = I$. This is contradictory to our analytical and numerical results. After reading the letter we found a fundamental mistake that stems from a misconception of the 'exact differential'.

Recalling the development of *J*-integral as the potential energy release rate $-d\pi/da$ for a given crack system as detailed by Rice (1968), all quantities involved in the energy π are taken as a function of the coordinates x_i and the crack length a. Thus

$$u_i = u_i(x_i, a), \quad \sigma_{ii} = \sigma_{ii}(x_i, a), \dots$$
 (1)

The above function relationships are still valid for the integrals I^* in Wu et al. (1998) and I in Bui (1974), since they were developed as the complementary energy release rate $d\pi_c/da$.

As has been shown by Wu et al. (1998),

$$I^* - I = \int_{\Gamma} \frac{\partial (u_i \sigma_{i2})}{\partial x_i} \, \mathrm{d}x_j \tag{2}$$

which in view of eqn (1), $(u_i\sigma_{i2})$ is also a function of x_j and a. Thus, the exact differential of concern takes the form of

$$d(u_i\sigma_{i2}) = \frac{\partial(u_i\sigma_{i2})}{\partial x_j}dx_j + \frac{\partial(u_i\sigma_{i2})}{\partial a}da$$
(3)

but is never in the form of

$$d(u_i\sigma_{i2}) = \frac{\partial(u_i\sigma_{i2})}{\partial x_i}dx_j.$$
 (4)

0020-7683/99/S - see front matter 0 1999 Published by Elsevier Science Ltd. All rights reserved PII: S0020-7683(98)00242-X

^{*}Corresponding author. E-mail: ccwu@ustc.edu.cn

Obviously, the commenter's argument that "the integral in (2) is an exact differential" is false. Therefore, the final conclusion is $I^* \neq I$.

References

- Bui, H.D., 1974. Dual path independent integrals in the boundary-value problems of cracks. Engineering Fracture Mechanics 6, 287–296.
- Rice, J.R., 1968. Mathematical analysis in the mechanics of fracture. In: Libowitz H. (Ed.), Fracture—An Advanced Treatise, vol. II. Academic, New York.
- Wu, C.C., Xiao, Q.Z., Yagawa, G., 1998. Dual analysis for path integrals and bounds for crack parameter. Int. J. Solids & Struct. 35, 1635–1652.